20 de ago de 2016

Sudoku matemático #1

O jogo Sudoku é um quebra-cabeça baseado no posicionamento lógico dos números de $1$ a $9$ em uma grade $9 \times 9$, subdividida em grades $3 \times 3$. Os números devem ser distribuídos de tal forma que os algarismos de $1$ a $9$ apareçam em cada subgrade e em cada fileira (linhas e colunas), sem repeti-los.

O Sudoku apresentado abaixo é uma "versão matemática" do quebra-cabeça. Apesar de utilizar números, o Sudoku não requer o desenvolvimento de aritmética ou álgebra para sua solução. Já nesta versão matemática é necessário sim prévios conhecimentos de Matemática, que variam desde Aritmética simples a conhecimentos de Trigonometria e Cálculo Diferencial e Integral.


Solução: clique aqui.

O puzzle foi projetado por Howard Garns, um arquiteto aposentado de $74$ anos de idade e construtor independente de puzzles, baseando-se, provavelmente, no quadrado latino, uma construção matemática criada pelo suíço Leonhard Euler no século $XVIII$. Garns adicionou ao quadrado latino a sua nova criação como uma grade parcialmente preenchida onde o solucionador deveria preencher os demais quadros vazios. As primeiras publicações do sudoku ocorreram nos Estados Unidos no final dos anos $1970$ na revista norte-americana Math Puzzles and Logic Problems, da editora Dell Magazines, especializada em desafios e quebra-cabeças. A editora deu, ao jogo, o nome de Number Place, que é usado até hoje nos Estados Unidos.

Em $1984$, a Nikoli, maior empresa japonesa de quebra-cabeças, descobriu o jogo e decidiu levá-lo àquele país. O nome sudoku é a abreviação japonesa para a longa frase suuji wa dokushin ni kagiru (数字は独身に限る) que significa "os dígitos devem permanecer únicos" e é uma marca registrada da Nikoli. Em japonês, a palavra é pronunciada [sɯːdokɯ]; em português, pronuncia-se sudoku. Em $1986$, depois de alguns aperfeiçoamentos no nível de dificuldade e na distribuição dos números, o sudoku tornou-se um dos jogos mais vendidos do Japão, onde os jogos numéricos são mais populares que palavras-cruzadas e caça-palavras, que não funcionam muito bem na língua japonesa. Outras editoras japonesas que lançaram o produto referem-se ao jogo como colocando os números, ou como "Nanpure". Algumas editoras não japonesas soletram o título como "su doku".

Apesar de toda a popularidade no Japão, o sudoku não conseguiu atrair a mesma atenção no Ocidente até o fim de $2004$, quando Wayne Gould, um juiz aposentado de Hong Kong, que também era fã de quebra-cabeças e programador de computador, viajou a Londres para convencer os editores do The Times a publicar o sudoku. Gould havia criado um programa de computador que gerava jogos de sudoku com vários níveis de dificuldade e não estava cobrando nada por ele. O Times decidiu arriscar e no dia $12$ de novembro de $2004$ publicou seu primeiro sudoku.

No Brasil, o sudoku é publicado pelas Revistas Coquetel (Ediouro) desde o setembro de $2005$. No ano seguinte, a Editora JBC lançou um manual de como jogar Soduku em mangá (nome dado aos quadrinhos japoneses) intitulado Sudoku & Mangá, roteirizado por Jay Morrison e ilustrado por Atsuhisa Okura. Em Portugal, ele começou a ser publicado em maio de $2005$ pelo jornal Público. Atualmente, com o avanço das tecnologias, o Suduku também se popularizou em aplicativos de celular. (Wikipédia)

Veja mais:

O problema dos quadrados mágicos
O cálculo no Japão
Números perigosos

Imprimir


21 de jul de 2016

Diferenciação implícita

A diferenciação implícita permite-nos encontrar a derivada de uma equação sem que esta esteja resolvida para $y$, mas principalmente quando isolar $y$ é muito trabalhosos, ou mesmo impossível.


Para uma equação tal como $y=x^2-3x+5$, que já está resolvida para $y$ em função de $x$, dizemos que $y$ está expresso diretamente, ou explicitamente em termos de $x$. Já uma equação tal como $xy+4=3x-y$, apesar de poder ser resolvida para $y$ em função de $x$, apresenta $y$ implicitamente como uma função ou mais de $x$.

Definição:

Uma função contínua num intervalo aberto é dita ser implícita numa equação onde figurem as variáveis $x$ e $y$, contanto que, quando $y$ é substituído por $f(x)$, a equação resultante seja verdadeira para todos os valores de $x$ no domínio de $f$.

Diferenciação implícita:

Dada uma equação na qual se estabelece $y$ implicitamente como uma função diferenciável de $x$, para calcularmos $dy / dx$, seguimos:

▪ Derivando ambos os membros da equação em relação a $x$, aplicando o operador $\cfrac{d}{dx}$ aos dois membros da equação, termo a termo.

▪ Considere que $y$ seja uma função de $x$.

▪ Utilize a regra da cadeia, do produto e quociente quando necessário para derivar as expressões nas quais figure $y$.

▪ O resultado será uma equação onde figure não somente $x$ e $y$, mas também $dy/dx$.

▪ Resolva a equação para obter a derivada $dy/dx$.

Quando realizamos uma diferenciação implícita o resultado é frequentemente uma equação que fornece $dy/dx$ em função de $x$ e $y$. Para calcular o valor numérico de $dy/dx$ é necessário conhecer o valor numérico de $y$, além do valor numérico de $x$.

O processo para diferenciação implícita pode apenas ser usado legitimamente se é conhecida a equação em questão que realmente determine $y$ implicitamente como uma função deiferenciável de $x$.

Exemplo $1$:

Como um primeiro exemplo, vamos tomar a equação $x+y-3=x^2$ que apesar de poder facilmente ser resolvida para $y$, vamos aplicar a diferenciação implícita a fim de ilustrar o conceito.

Iniciamos aplicando o operador $\cfrac{d}{dx}$ a ambos os membros da equação:
\begin{equation*}
\frac{d}{dx}\left(x+y-3\right) = \frac{d}{dx} \left(x^2\right)
\end{equation*}
e em seguida, aplicamos o operador $\cfrac{d}{dx}$ termo a termo:
\begin{equation*}
\cfrac{d}{dx}\left( x \right) + \frac{d}{dx} \left( y \right) - \frac{d}{dx} \left( 3 \right) = \frac{d}{dx} \left( x^2 \right)
\end{equation*}
A derivada de $x$ é $1$. A derivada de $y$ nós não sabemos e mantemos o operador diferencial $dy/dx$. A derivada da constante $3$ é zero e a derivada de $x^2$ é $2x$. Assim:
\begin{equation*}
1+\frac{dy}{dx}-0=2x
\end{equation*}
Agora, resolvemos a equação para $dy/dx$, obtendo:
\begin{equation*}
\frac{dy}{dx} = 2x-1
\end{equation*}

Exemplo $2$:

Neste segundo exemplo, tomemos a equação $x^4+y^2=2x$. Para derivarmos implicitamente, aplicamos o operador diferencial $d/dx$ em ambos os lados da equação:
\begin{equation*}
\frac{d}{dx}\left( x^4+y^2 \right) = \frac{d}{dx}\left(2x\right)
\end{equation*}
E derivamos termo a termo:
\begin{equation*}
\frac{d}{dx}\left(x^4\right) + \frac{d}{dx} \left(y^2\right) = \frac{d}{dx} \left(2x\right)
\end{equation*}
A derivada de $x^4$ é $4x^3$. A derivada de $y^2$ não sabemos e mantemos o operador diferencial $d/dx$. A derivada de $2x$ é $2$. Assim:
\begin{equation*}
4x^3 + \frac{d}{dx}\left(y^2\right) = 2
\end{equation*}
Temos que nos atentar ao fato de que no caso da diferenciação de $y^2$, estamos derivando em relação a $x$ e não em relação a $y$. Temos que aplicar a regra da cadeia. O que fazemos é derivar $y^2$ como $2y$ e aplicar o operador $d/dx$ justamente por não sabermos a natureza de $y$.

Veja que se hipoteticamente $y=\cos(x)$, então $y^2=\cos^2(x)$ e a derivada de $\left(y^2\right)^\prime = 2\cos(x)\cdot \left(-\text{sen}(x)\right)$ e não somente $2\cos(x)$. Deste modo, continuamos nosso problema escrevendo:
\begin{equation*}
4x^3 + 2y \cdot \frac{dy}{dx} = 2
\end{equation*}
Agora, isolamos $dy/dx$:
\begin{equation*}
\frac{dy}{dx} = \frac{2-4x^3}{2y} = \frac{1-2x^3}{y}
\end{equation*}

Exemplo $3$:

A regra do produto é utilizada quando em um ou mais termos da equação aparece um produto entre as variáveis $x$ e $y$, tal como $xy$. Vamos considerar a equação $3x^2 +y^3+xy=x+1$. Para derivarmos implicitamente, aplicamos o operador diferencial $d/dx$ em ambos os membros da equação:
\begin{equation*}
\frac{d}{dx} \left(3x^2 + y^3 + xy\right) = \frac{d}{dx} \left(x+1 \right)\\
\ \\
\frac{d}{dx}\left(3x^2 \right) + \frac{d}{dx} \left(y^3 \right) + \frac{d}{dx} \left(xy \right) = \frac{d}{dx} \left(x\right) \frac{d}{dx} \left(1\right)
\end{equation*}
A derivada de $3x^2$ é $6x$. Para a derivada de $y^3$, aplicamos a regra da cadeia, obtendo $\displaystyle 3y^2\left( \frac{d}{dx}~y\right)$. Para a derivada de $xy$, aplicamos a regra do produto, obtendo $\displaystyle 1y + x \frac{dy}{dx}$. A derivada de $x$ é $1$ e da constante $1$ é zero. Assim:
\begin{equation*}
6x +3y^2 \frac{d}{dx}(y) + \left(y+x\frac{dy}{dx}\right) = 1\\
\ \\
6x + 3y^2 \frac{dy}{dx} + y + x\frac{dy}{dx} = 1\\
\ \\
\left(3y^2 + x \right) \frac{dy}{dx} = 1-y-6x\\
\ \\
\frac{dy}{dx} = \frac{1-y-6x}{3y^2+x}
\end{equation*}

Exemplo $4$:

Vamos encontrar a derivada implícita da seguinte equação envolvendo seno e cosseno $3x^2y^3+4~\text{sen}(y)=\cos(x)$.

Iniciamos diferenciando termo a termo ambos os membros da equação:
\begin{equation*}
\frac{d}{dx} \left(3x^2y^3+4~\text{sen}(y)\right) = \frac{d}{dx} cos(x)\\
\ \\
3\frac{d}{dx}\left(x^2y^3\right) + 4\frac{d}{dx}\left(\text{sen}(y)\right) = \frac{d}{dx} \left(\cos(x)\right)
\end{equation*}
Para derivarmos $x^2y^3$, aplicamos a regra do produto e a regra da cadeia. Já para a derivada de $\text{sen}(y)$, aplicamos a regra da cadeia. E para a derivada de $\cos(x)=-\text{sen}(x)$ . Assim:
\begin{equation*}
3\left[ \frac{d}{dx} \left(x^2\right)\right]y^3+3x^2\left[ \frac{d}{dx}\left( y^3 \right) \right]+4\frac{d}{dx}\left[\text{sen}(y)\right] = \frac{d}{dx}\left[ \cos(x) \right]\\
\ \\
6xy^3 + 9x^2y^2\frac{dy}{dx}+4\cos(y)\frac{dy}{dx} = -\text{sen}(x)\\
\ \\
\left(9x^2y^2+4\cos(y)\right)\frac{dy}{dx} = -\text{sen}(x)-6xy^3\\
\ \\
\frac{dy}{dx} = \frac{-\text{sen}(x)-6xy^3}{9x^2y^2+4\cos(y)} = -\frac{\text{sen}(x)+6xy^3}{9x^2+4\cos(y)}
\end{equation*}

Exemplo $5$:

Assim como a regra do produto, podemos utilizar a regra do quociente quando em um ou mais termos da equação aparece um quociente entre as variáveis $x$ e $y$, tal como $x/y$. Vamos considerar a equação $x^3+y-\cfrac{2x}{y}=\ln(y)$. Para derivarmos implicitamente, aplicamos o operador diferencial $d/dx$ em ambos os membros da equação:
\begin{equation*}
\frac{d}{dx}\left( x^3+y+\frac{2x}{y} \right)=\frac{d}{dx} \left(\ln(y)\right)\\
\ \\
\frac{d}{dx}\left(x^3\right)+\frac{d}{dx}\left(y\right)+\frac{d}{dx}\left(\frac{2x}{y}\right) = \frac{1}{y}\left(\ln (y)\right)\\
\ \\
3x^2+\frac{dy}{dx}+\left[ \frac{2 y-2x \frac{dy}{dx}}{y^2} \right] = \frac{1}{y} \frac{dy}{dx}\\
\ \\
3x^2+\frac{dy}{dx}+\frac{2}{y}-\frac{2x}{y^2}\frac{dy}{dx}=\frac{1}{y}\frac{dy}{dx}\\
\ \\
\left( 1-\frac{1}{y}-\frac{2x}{y^2} \right)\frac{dy}{dx} = -3x^2-\frac{2}{y}\\
\ \\
\left(\frac{y^2-y-2x}{y^2} \right)\frac{dy}{dx} = \frac{-3x^2y-2}{y}\\
\ \\
\frac{dy}{dx}=\frac{y^2}{y^2-y-2x}\cdot \frac{(-3x^2y-2)}{y}\\
\ \\
\frac{dy}{dx} = \frac{y(-3x^2y-2)}{y^2-y-2x}\\
\ \\
\frac{dy}{dx} = \frac{y(3x^2y+2)}{2x+y-y^2}

\end{equation*}

Exemplo $6$:

Neste exemplo, vamos utilizar a diferenciação implícita para provar que a regra da potência para expoentes inteiros no cálculo de derivadas, também é válida para expoentes fracionários. Vamos demonstrar que:
\begin{equation*}
\frac{d}{dx} x^n = n x^{n-1}
\end{equation*}
para todo $n = p/q$.

Iniciamos a prova para expoentes fracionários introduzindo $y$ como a variável dependente:
\begin{equation*}
y = x~^{p/q}
\end{equation*}
Elevamos ambos os membros à potência $q$:
\begin{equation*}
y^q = x^p
\end{equation*}
Derivamos implicitamente em relação a $x$, utilizando a regra da potência para expoentes inteiros:
\begin{equation*}
q~u~^{q-1} \frac{dy}{dx} = p~x~^{p-1}\\
\ \\
\frac{du}{dx} = \frac{p}{q} \cdot \frac{x~^{p-1}}{y~^{q-1}}
\end{equation*}
Podemos escrever $y~^{q-1}$ como $y^q \cdot y^{-1} = \cfrac{y^q}{y}$. Assim:
\begin{equation*}
\frac{dy}{dx} = \frac{p}{q} \cdot \frac{x~^{p-1}}{\cfrac{y~^q}{y}}
\end{equation*}
Mas $y^2=x^p$ e $y = x^{p/q}$, assim:
\begin{equation*}
\frac{dy}{dx} = \frac{p}{q} \cdot \frac{x~^{p-1}}{x~^p}\cdot x^{p/q}\\
\ \\
\frac{dy}{dx} = \frac{p}{q} \cdot x^{p-1-p} \cdot x^{p/q}\\
\ \\
\frac{dy}{dx} = \frac{p}{q} \cdot x^{-1} \cdot x^{p/q}\\
\ \\
\frac{dy}{dx} = \frac{p}{q} \cdot x~^{p/q~-1}
\end{equation*}
Finalizando a prova.

Referências:

[1] Cálculo com Geometria Analítica V1 - Simmons
[2] Cálculo V1 - Munem-Foulis

Veja mais:

Funções compostas e a regra da cadeia
Aplicação de derivada na determinação de máximos e mínimos
Aplicação de derivada no estudo de reflexão e refração de um raio de luz

Imprimir


16 de jul de 2016

Resolução da integral $\small \displaystyle \int \frac{x}{ax+b} dx$

Nesta postagem, veremos que:
\begin{equation*}
\int \frac{x}{ax+b}dx = \frac{1}{a^2} \left(ax -b \ln \left|ax+b \right| \right)+C
\end{equation*}
onde $a$ e $b$ são constantes $\in \mathbb{R}$, sendo $a \neq 0$.


Seja a integral:
\begin{equation*}
I = \int \frac{x}{ax+b} dx
\end{equation*}
Reescrevemos o integrando como:
\begin{equation*}
I = \int \left(\frac{1}{a}-\frac{b}{a(ax+b)}\right) dx
\end{equation*}
Integrando termo a termo:
\begin{equation*}
I = \frac{1}{a} \int dx - \frac{b}{a} \int \frac{1}{ax+b} dx
\end{equation*}
Para o integrando $\cfrac{1}{ax+b}$, fazemos a substituição $u = ax+b$. Assim, $du = a~dx$ e $dx = \cfrac{1}{a}du$:
\begin{equation*}
I = \frac{1}{a} \int dx - \frac{b}{a} \int \frac{1}{u}\cdot \frac{1}{a} du \\
\ \\
I = \frac{1}{a} \int dx - \frac{b}{a^2} \int \frac{1}{u} du
\end{equation*}
A integral de $1$ é $x$ e a integral de $\cfrac{1}{u}$ é $\ln (u)$. Assim:
\begin{equation*}
I = \frac{x}{a} - \frac{b}{a^2} \ln (u)+C \\
\ \\
I = \frac{ax - b \ln (u)}{a^2} + C\\
\ \\
I = \frac{1}{a^2}\left( ax-b \ln (u)\right)+C
\end{equation*}
Mas $u = ax+b$, assim:
\begin{equation}
I = \frac{1}{a^2} \left(ax - b \ln |ax+b|\right) + C
\end{equation}

Exemplo $1$:

Encontrar a área entre as curvas $f(x)= \cfrac{x}{x+1}$ e $g(x)=\cfrac{x}{3x+2}$, compreendida no intervalo $[0,1]$.


A área desejada é a diferença entre as áreas das duas curvas. Para o cálculo dessas área, utilizamos o conceito de integral definida com limite inferior igual a $0$ e superior igual a $1$, de modo que:
\begin{equation*}
A = \int_0^1  \frac{x}{x+1}dx - \int_0^1 \frac{x}{3x+2}dx
\end{equation*}
Utilizamos a fórmula obtida em $(1)$.
\begin{equation*}
A = \left[ \left(x - \ln |x+1|\right) \right]_0^1 - \left[ \frac{1}{9} \left(3x - 2 \ln |3x+2|\right)\right]_0^1\\
\ \\
A = \left[ 1- \ln (2) + \ln (1)\right] - \left[ \frac{3-2\ln(5)+2\ln(2)}{9}\right]\\
\ \\
A \approx 0,177~\text{unidades de área}
\end{equation*}

Exemplo $2$:

Encontrar a área compreendida entre as curvas $f(x)=\cfrac{x}{2x+0,2}$ e $g(x)=\cfrac{x}{2-0,25 x}$, sendo o limite inferior igual a $0$ e o limite  superior o ponto de intersecção entre as duas curvas no quadrante onde $x$ e $y$ são positivos.


Começamos escrevendo as funções como:
\begin{equation*}
f(x) = \frac{5x}{10x+1} \quad \text{e} \quad g(x) = \frac{4x}{8-x}
\end{equation*}
Para encontrarmos os ponto de intersecção entre as duas curvas, fazemos $f(x)=g(x)$ e calculamos o valor de $x$:
\begin{equation*}
\frac{5x}{10x+1} = \frac{4x}{8-x}\\
\ \\
5x(8-x) = 4x(10x+1)\\
\ \\
45x^2-36x = 0\\
\ \\
x(45x-36)=0\\
\ \\
x_1=0 \quad \text{e} \quad x_2 = \cfrac{4}{5}
\end{equation*}
Desta forma, os limites de integração serão $0$ e $4/5$, e a área desejada será a diferença das áreas de $f(x)$ e $g(x)$, dada pela diferença das integrais definidas:
\begin{equation*}
A = \int_0^{4/5}\frac{x}{2x+\frac{1}{5}}dx - \int_0^{4/5}\frac{x}{2-\frac{x}{4}} dx
\end{equation*}
Para a primeira integral, temos que $a=2$ e $b=1/5$. Para a segunda integral, temos $a=-1/4$ e $b=2$. Assim, aplicando a fórmula encontrada em $(1)$:
\begin{equation*}
A = \left[ \frac{1}{4}\left(2x-\frac{1}{5}\ln\left|2x+\frac{1}{5}\right| \right) \right]_0^{4/5} - \left[16\left( -\frac{x}{4}-2\ln \left|-\frac{x}{4}+2\right|\right)\right]_0^{4/5}
\end{equation*}
Aplicando os limites em $x$:
\begin{equation*}
A=\left[ \frac{1}{4}\left( \frac{8}{5}-\frac{1}{5}\ln\left(\frac{9}{5}\right) \right) -\frac{1}{4}\left( -\frac{1}{5}\ln\left(\frac{1}{5}\right) \right) \right] - \\
\ \\
\left[ 16\left( -\frac{1}{5}-2\ln\left(\frac{9}{5}\right) \right) - 16\left( -2\ln(2) \right) \right]
\ \\
A \approx 0,1186 ~\text {unidades de área}
\end{equation*}


Imprimir

Veja mais:

Lista de resolução de integrais
Integração por substituição
Integração por partes

Imprimir


10 de jul de 2016

Funções compostas e a regra da cadeia

A regra da cadeia é uma fórmula para a derivada da função composta de duas ou mais funções. Desenvolvida por Gottfried Leibniz, a regra da cadeia teve grande importância para o avanço do cálculo diferencial. Seu desenvolvimento foi devido à mudança de notação, ou seja, ao invés de usar a notação de Newton, Leibniz adotou uma notação referente à tangente, onde a derivada é dada pela diferença dos valores na ordenada dividida pela diferença dos valores na abcissa e onde essa diferença é infinitamente pequena $(dy/dx)$. A partir desta observação, a regra da cadeia passou a permitir a diferenciação de funções diversas cujo argumento é outra função.


Vamos iniciar este estudo com um problema de derivar uma função. Para isso, suponha a função:
\begin{equation}
y = (x^2 + 5x)^3
\end{equation}
e que queremos determinar a sua derivada $dy/dx$.

Uma forma de resolver é usa o Teorema do Binômio para expandir a função no polinômio:
\begin{equation}
y = (x^2+5x)^3 = x^6+15x^5++75x^4+125x^3
\end{equation}
e em seguida, diferenciarmos o polinômio:
\begin{equation}
\frac{dy}{dx} = 6x^5+75x^4+300x^3+375x^2
\end{equation}
Neste caso o processo é fácil, mas trabalhoso. Mas para funções envolvendo expoentes de grau mais alto, tais como $y=(7x^5+19)^{100}$, o processo é inviável.

Outra forma de resolver é fazermos a introdução de uma nova variável auxiliar $u=x^2+5$, de modo que a relação $(1)$ pode ser decomposta em partes mais simples, como:
\begin{equation}
y=u^3 \quad \text{e} \quad u=x^2+5x
\end{equation}
Neste sentido, se substituirmos a expressão de $u$ em $y=u^3$ obtemos uma função composta, também chamada de função de função. Em linhas gerais $y$ é uma função de $u$, onde $u$, por sua vez é uma função de $x$:
\begin{equation}
y=f(u) \quad \text{onde} \quad u=g(x)
\end{equation}
A correspondente função composta é a função:
\begin{equation}
y = f\left(g(x)\right)
\end{equation}

A regra da cadeia

Se $y$ é uma função diferenciável de $u$ e se $u$ é uma função diferenciável de $x$, então $y$ é uma função diferenciável de $x$, de modo que:
\begin{equation}
\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}
\end{equation}
Neste modelo, a regra da cadeia tem aparência de uma identidade algébrica trivial. A notação fracionária de Leibniz para as derivadas sugere que $du$ pode ser cancelado das duas "frações" à direita. Seu conteúdo intuitivo é fácil de entender se pensarmos em derivadas como taxas de variação:

Se $y$ varia $a$ vezes mais rápido que $u$ e se $u$ varia $b$ vezes mais rápido que $x$, então $y$ varia $ab$ vezes mais rápido que $x$.

Voltando à função composta dada em $(1)$ e sua decomposição $(4)$, podemos aplicar a fórmula $(7)$, obtendo:
\begin{matrix}
\displaystyle \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}&=&3u^2(2x+5)=3(x^2+5)^2(2x+5)\\
&=& 6x^5+75x^4+300x^3+375x^2
\end{matrix}
O resultado obtido é o mesmo encontrado em $(3)$. Da mesma forma, podemos calcular facilmente a derivada de $y = (7x^5+19)^{100}$. Escrevemos:
\begin{equation*}
y=u^{100}\quad \text{onde} \quad u=7x^5+19
\end{equation*}
e usamos a fórmula $(7)$, obtendo:
\begin{matrix}
\displaystyle \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}&=&100u^{99}\cdot 35x^4=100(7x^5+19)^{99}\cdot 35x^4\\
&=& 3500x^4(7x^5+19)^{99}
\end{matrix}
Vejam como esses exemplos mostram como a regra da cadeia é um instrumento poderoso para o cálculo.

Demonstração:

Usando uma variação infinitesimal $\Delta x$ na variável independente $x$, esta produz uma variação $\Delta u$ na variável $u$, que por sua vez, produz uma variação $\Delta y$ na variável $y$. Derivabilidade implica em continuidade, assim, $\Delta u \rightarrow 0$ quando $\Delta x \rightarrow 0$. Olhando as definições das três derivadas que queremos relacionar:
\begin{equation}
\frac{dy}{dx}=\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x} \quad , \quad
\frac{dy}{du}=\lim_{\Delta u \rightarrow 0}\frac{\Delta y}{\Delta u} \quad , \quad
\frac{du}{dx}=\lim_{\Delta x \rightarrow 0}\frac{\Delta u}{\Delta x}
\end{equation}
podemos completar a demonstração por álgebra simples:
\begin{equation}
\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u}\cdot \frac{\Delta u}{\Delta x}
\end{equation}
e assim:
\begin{equation}

\frac{dy}{dx}=\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} =\\
\ \\
= \left[  \lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta u} \right] \left[  \lim_{\Delta x \rightarrow 0}\frac{\Delta u}{\Delta x} \right]=\\
\ \\
=\left[  \lim_{\Delta u \rightarrow 0}\frac{\Delta y}{\Delta u} \right] \left[  \lim_{\Delta x \rightarrow 0}\frac{\Delta u}{\Delta x} \right]= \frac{dy}{du}\cdot \frac{du}{dx}

\end{equation}
A falha desta demonstração é na possível divisão por zero. Ao calcularmos $dy/dx$ pela definição dada em $(8)$, sabemos pelo significado dessa fórmula que o incremento $\Delta x$ é infinitesimal, tendendo a zero, mas nunca será igual a zero. Por outro lado, pode ocorrer de $\Delta x$ não induzir uma variação real em $u$, de modo que $\Delta u = 0$. Essa possibilidade invalida as relações $(9)$ e $(10)$.

Podemos contornar este problema usando um artifício matemático. Começamos com a definição de derivada $dy/du$:
\begin{equation}
\frac{dy}{du} = \lim_{\Delta u \rightarrow 0} \frac{\Delta y}{\Delta u}
\end{equation}
Isto é equivalente a:
\begin{equation}
\frac{\Delta y}{\Delta u} = \frac{dy}{du}+\epsilon\\
\ \\
\Delta y = \frac{dy}{du}\Delta u + \epsilon \Delta u
\end{equation}
onde $\epsilon \rightarrow 0$ quando $\Delta u \rightarrow 0$.

Nestas equações supomos que $\Delta u$ é um incremento não-nulo em $u$, mas a última equação é válida mesmo quando $\Delta u = 0$. Dividindo esta por um incremento não-nulo $\Delta x$, obtemos:
\begin{equation}
\frac{\Delta y}{\Delta x} = \frac{dy}{du} \frac{\Delta u}{\Delta x} + \epsilon  \frac{\Delta u}{\Delta x}
\end{equation}
E se fizermos $\Delta x \rightarrow 0$ obtemos a regra da cadeia dada em $(7)$, desde que $\epsilon \rightarrow 0$.

A regra da cadeia é muito importante e indispensável para uma boa parte dos cálculos mais complexos de derivadas. Um exemplo disso foi mostrado no cálculo da derivada de $y = (7x^5+19)^{100}$. Podemos expressar em linhas gerais como:
\begin{equation}
\frac{d}{dx}\left(~~~\right)^n = n\left(~~~\right)^{n-1}~\frac{d}{dx}\left(~~~\right)
\end{equation}
onde qualquer função derivável de $x$ pode ser inserida nos parênteses. Se denotarmos a função por $u$, a fórmula pode ser escrita como:
\begin{equation}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}
\end{equation}

Exemplo $1$:

Aplicar a regra da cadeia para derivar $y=(3x^4+1)^7$.

Usando a fórmula $(15)$ e fazendo $u = 3x^4+1$, obtemos:
\begin{equation*}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}\\
\ \\
\frac{dy}{dx} = 7\left(3x^4+1\right)^{6}~\frac{d}{dx} \left(3x^4+1\right)=7\left(3x^4+1\right)^6\cdot 12x^3
\end{equation*}

Exemplo $2$:

Aplicar a regra da cadeia para derivar $y = (x+x^2-2x^5)^6$.

Usando a fórmula $(15)$ e fazendo $u = x+x-2x^5$, obtemos:
\begin{equation*}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}\\
\ \\\frac{dy}{dx} = 6\left(x+x^2-2x^5\right)^5 \cdot \frac{d}{dx}\left(x+x^2-2x^5\right)\\
\ \\
\frac{dy}{dx} = 6\left(x+x^2-2x^5\right)^5 \cdot \left(1+2x-10x^4\right)
\end{equation*}

Exemplo $3$:

Aplicar a regra da cadeia para derivar $y=(12-x^2)^{-2}$.

Usando a fórmula $(15)$ e fazendo $u = x+x-2x^5$, obtemos:
\begin{equation*}
\frac{d}{dx}\left(~u~\right)^n = n\left(~u~\right)^{n-1}~\frac{du}{dx}\\
\ \\
\frac{dy}{dx} = -2 \left(12-x^2\right)^{-3} \cdot \frac{d}{dx}\left(12-x^2\right)\\
\ \\
\frac{dy}{dx} = -2\left(12-x^2\right)^{-3} \cdot \left(-2x\right) = 4x \left(12-x^2\right)^{-3}
\end{equation*}

Exemplo $4$:

Aplicar a regra da cadeia para derivar $y = \left[\left(3x^4+1\right)^7+1\right]^5$.

Neste caso, precisamos aplicar a fórmula $(15)$ duas vezes:
\begin{equation*}
\frac{dy}{dx} = 5\left[\left(3x^4+1\right)^7+1\right]^4~\frac{d}{dx}\left[\left(3x^4+1\right)^7+1\right]\\
\ \\
= 5\left[\left(3x^4+1\right)^7+1\right]^4 \cdot 7\left(3x^4+1\right)^6~\frac{d}{dx}\left(3x^4+1\right)\\
\ \\
= 5\left[\left(3x^4+1\right)^7+1\right]^4 \cdot 7\left(3x^4+1\right)^6 \cdot 12x^3
\end{equation*}

Exemplo $5$:

Aplicar a regra da cadeia para derivar $\displaystyle  y = \left[\frac{(1-2x)}{(1+2x)} \right]^4$

Neste caso, usamos a regra da cadeia e a regra do quociente:
\begin{equation*}
\frac{dy}{dx} = 4 \left[\frac{(1-2x)}{(1+2x)} \right]^3~\frac{d}{dx}\left(\frac{1-2x}{1+2x}\right)\\
\ \\
= 4\left(\frac{1-2x}{1+2x}\right)^3\cdot \frac{(-2)(1+2x)-(1-2x)(2)}{(1+2x)^2}\\
\ \\
= 4 \left(\frac{1-2x}{1+2x}\right)^3\cdot \frac{(-2-4x-2+4x)}{(1+2x)^2}\\
\ \\
= 4 \left(\frac{1-2x}{1+2x}\right)^3\cdot \frac{-4}{(1+2x)^2}\\
\ \\
= -16\frac{(1-2x)^3}{(1+2x)^5}
\end{equation*}

A regra da cadeia é realmente uma regra para a diferenciação de uma função composta $f \circ g$. Seja $y=f(u)$ e $u=g(x)$, de modo que:
\begin{equation}
y = f(u) = f\left[g(x)\right] = \left(f \circ g\right)(x)
\end{equation}
Desta forma, assumindo que $g$ é diferenciável em $x$ e $f$ é diferenciável em $g(x)$, pela regra da cadeia:
\begin{equation}
\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f^\prime (u) g^\prime (x) = f^\prime \left[g(x)\right] g^\prime (x)
\end{equation}

Se temos uma função composta $f \circ g$, tal que $(f \circ g)(x) = f\left[g(x)\right]$, chamamos $g$ de função interna e $f$ de função externa. Então, podemos estabelecer a regra da cadeia como sendo: a derivada da composta de duas funções é a derivada da função externa tomada no valor da função interna, multiplicada pela derivada da função interna:
\begin{equation}
\left(f \circ g\right)^\prime (x) = f^\prime \left[g(x)\right] g^\prime (x)
\end{equation}

Exemplo $6$:

Aplicar a regra da cadeia para derivar $y = \text{sen}\left(x^3\right)$

Neste caso, a função externa é a função seno e a função interna é a função $g(x)=x^3$. Temos então que:
\begin{equation*}
\frac{dy}{dx} =  \cos \left(x^3\right)~3x^2 = 3x^2\cos\left(x^3\right)
\end{equation*}

Exemplo $7$:

Aplicar a regra da cadeia para provar que se $f=\cos(x)$, então $f^\prime = - \text{sen}(x)$.

Começamos escrevendo a função cosseno em termos de seno:
\begin{equation*}
\cos(x) = \text{sen}\left(\frac{\pi}{2}-x\right)
\end{equation*}
Neste caso, a função externa é a função seno e a função interna é $\displaystyle g(x) = \frac{\pi}{2}-x$. A derivada da função cosseno é o seno e a derivada da função interna é $g^\prime(x) = -1$. Assim:
\begin{equation*}
\frac{dy}{dx} = \left[ \cos\left(\frac{\pi}{2}-x\right)\right](-1) = -\cos \left(\frac{\pi}{2}-x\right)=-\text{sen}(x)
\end{equation*}

Até o momento consideramos apenas as três variáveis $y$, $u$ e $x$. A regra da cadeia pode ser estendida a mais variáveis. Se adicionarmos uma nova variável $z$, a fórmula dada em $(7)$ pode ser escrita como:
\begin{equation}
\frac{dy}{dz} = \frac{dy}{du} \frac{du}{dx} \frac{dx}{dz}
\end{equation}
onde $y$ depende de $u$, $u$ depende de $x$ e $x$ depende de $z$.

Se adicionarmos uma nova variável $w$, então $z$ dependerá de $w$:
\begin{equation}
\frac{dy}{dw} = \frac{dy}{du} \frac{du}{dx} \frac{dx}{dz} \frac{dz}{dw}
\end{equation}
e assim por diante. Isso mostra o quão poderosa é a regra da cadeia no cálculo de derivadas de funções compostas.

Referências:

[1]  Cálculo com geometria analítica V1 - Simmons
[2] Cálculo V1 - Munem-Foulis
[3] A regra da cadeia no Wikipédia

Veja mais:

Leibniz e as diferenciais
Os mitos Leibnizianos a respeitos das curvas diferenciais
Aplicação de derivadas no estudo sobre a reflexão e refração de um raio de luz

Imprimir


7 de jul de 2016

Aplicação de derivadas no estudo sobre a reflexão e refração de um raio de luz

Utilizando derivadas como forma de otimização, vamos aplicar no problema de reflexão da luz em um espelho plano e da refração da luz na água, demonstrando que a luz percorre o menor caminho possível.

Considere um raio de luz que parte de um ponto $A$ e segue a um ponto $P$ sobre um espelho plano sendo refletido e passando por um ponto $B$. O raio incidente e o raio refletido possuem ângulos iguais a $\alpha$ e $\beta$, respectivamente.

Suponha que o raio de luz siga o caminho mais curto de $A$ a $B$ passando pelo espelho. Provemos que essa lei de reflexão seguindo o caminho $APB$ é mais curto quando $\alpha = \beta$.

[Figura 1]

Considere que o ponto $P$ assuma várias posições no espelho, sendo cada posição determinada por um valor de $x$, conforme se pode observar na figura acima. Vamos considerar o comprimento $L$ do percurso do raio de luz como sendo uma função de $x$. Assim, podemos escrever a seguinte expressão:
\begin{equation*}
L = \sqrt{a^2+x^2} + \sqrt{b^2+(c-x)^2} = (a^2+x^2)^{1/2} + \left(b^2+(c-x)^2\right)^{1/2}
\end{equation*}
A derivada desta expressão nos leva a:
\begin{equation*}
\frac{dL}{dx} = \frac{1}{2} \left(a^2+x^2\right)^{-1/2} \cdot (2x)+\frac{1}{2}\left[ b^2+(c-x)^2 \right]^{-1/2} \cdot 2(c-x)(-1)
\end{equation*}
\begin{equation}
\frac{dL}{dx} = \frac{x}{\sqrt{a^2+x^2}} - \frac{c-x}{\sqrt{b^2+(c-x)^2}}
\end{equation}
Minimizamos o comprimento $L$ igualando a deriva acima a zero, obtendo:
\begin{equation}
\frac{x}{\sqrt{a^2+x^2}} = \frac{c-x}{\sqrt{b^2+(c-x)^2}}
\end{equation}
Esta equação nos revela que para os ângulos $\alpha$ e $\beta$ nos dois triângulos retângulos da figura acima, as razões entre a hipotenusa e o lado adjacente são iguais e assim $\alpha$ e $\beta$ são iguais.

Derivando a função $L(x)$ e em seguida igualando a zero, minimizamos o comprimento $L$. Podemos ainda utilizar a relação dada em $(1)$ no teste da segunda derivada:
\begin{equation*}
\frac{d^2L}{dx^2} = \frac{a^2}{(a^2+x^2)^{3/2}} + \frac{b^2}{\left[b^2+(c-x)^2 \right]^{3/2}}
\end{equation*}
Basta observar que a quantidade acima será positiva, já que $a$, $b$ e $c$ são distâncias entre pontos.

Podemos ainda utilizar a trigonometria nos triângulos retângulos da figura acima, de modo que a condição de minimização dada em $(2)$ pode ser escrita como:
\begin{equation*}
\cos(\alpha) = \cos(\beta)
\end{equation*}
O que nos leva a $\alpha = \beta$.

Esta lei de reflexão já era conhecida pelos gregos da Antiguidade, mas o fato de que o raio de luz refletido segue o caminho mais curto foi descoberto muito mais tarde por Heron de Alexandria, no século $I~d.C.$.

A demonstração de Heron é simples, porém engenhosa: sejam $A$ e $B$ os mesmos pontos da figura anterior, reproduzidos na figura abaixo, e seja $B~^\prime$ a imagem especular de $B$. A superfície do espelho é o plano bissetor de $BB~^\prime$. O segmento $AB~^\prime$ intercepta o espelho num ponto $P$ e este é o ponto onde o raio de luz é refletido ao passar de $A$ para $B$, pois então $\alpha = \gamma$ e $\gamma = \beta$ e assim $\alpha = \beta$. O percurso total do raio de luz é dado por:
\begin{equation*}
AP + PB = AP + PB~^\prime = AB~^\prime
\end{equation*}
O percurso de $A$ a $B$, passando por qualquer outro ponto $P~^\prime$ do espelho é:
\begin{equation*}
AP~^\prime + P~^\prime B = AP~^\prime + P~^\prime B~^\prime
\end{equation*}
que é maior do que o terceiro lado do triângulo $AP~^\prime B~^\prime$, o lado $AB~^\prime $, o que mostra que o percurso real de $A$ para $B$ do raio de luz refletido no espelho é o menor possível.
[Figura 2]

Temos que deixar claro que estes cálculos só tem sentido se considerarmos que o raio de luz tem todo o percurso em um único meio a uma velocidade constante. No entanto, em meios diferentes, como ar, água, vidro, a luz tem velocidades diferentes. Se um raio de luz passa do ar para a água, ele é refratado passando a uma direção mais próxima da perpendicular à interface. O percurso $APB$ não é mais o caminho mais curto de $A$ a $B$.

[Figura 3]

Em $1621$ o cientista holandês Snell descobriu empiricamente que o caminho real do raio de luz é o que satisfaz a equação:
\begin{equation}
\frac{\text{sen}(\alpha)}{\text{sen}(\beta)} = \text{constante}
\end{equation}
onde essa constante é independente da posição de $A$ e $B$. Esse fato é chamado de Lei de Refração de Snell. Podemos provar a Lei de Snell partindo do pressuposto de que o raio percorre um caminho de $A$ a $B$ de modo a minimizar o tempo total de percurso.

Seja a velocidade da luz no ar denotada por $V_{ar}$ e na água $V_{ag}$ e seja $T$ o tempo total do percurso, tempo no ar mais o tempo na água:
\begin{equation*}
T = \frac{\sqrt{a^2+x^2}}{V_{ar}} + \frac{\sqrt{b^2+(c-x)^2}}{V_{ag}}\\
\ \\
T = \frac{1}{V_{ar}}\left(a^2+x^2\right)^{1/2} + \frac{1}{V_{ag}}\left(b^2+(c-x)^2\right)^{1/2}
\end{equation*}
Se calcularmos a derivada desta função $T(x)$ e observarmos o seu significado em termos da figura acima, obteremos:
\begin{equation*}
\small \frac{dT}{dx} = \frac{1}{V_{ar}} \cdot \frac{1}{2}\cdot \left(a^2+x^2\right)^{-1/2} \cdot 2x + \frac{1}{V_{ag}}\cdot \frac{1}{2}\cdot \left( b^2+(c-x)^2 \right)^{-1/2} \cdot 2(c-x)\cdot (-1)\\
\end{equation*}
\begin{equation}
\frac{dT}{dx} = \frac{1}{V_{ar}}\cdot\frac{x}{\sqrt{a^2+x^2}} - \frac{1}{V_{ag}}\cdot \frac{c-x}{\sqrt{b^2+(c-x)^2}}
\end{equation}
E ainda pela figura acima, temos:
\begin{equation*}
\text{sen}(\alpha) = \frac{x}{\sqrt{a^2+x^2}} \quad \text{e} \quad \text{sen}(\beta)=\frac{c-x}{\sqrt{b^2(c-x)^2}}
\end{equation*}
Substituindo na derivada anterior, obtemos:
\begin{equation*}
\frac{dT}{dx} = \frac{\text{sen}(\alpha)}{V_{ar}} - \frac{\text{sen}(\beta)}{V_{ag}}
\end{equation*}
Para obtermos o $T$ mínimo, igualamos essa derivada a zero:
\begin{equation*}
0 = \frac{\text{sen}(\alpha)}{V_{ar}} - \frac{\text{sen}(\beta)}{V_{ag}}\\
\ \\
\frac{\text{sen}(\alpha)}{V_{ar}} = \frac{\text{sen}(\beta)}{V_{ag}}
\end{equation*}
Ou ainda:
\begin{equation}
\frac{\text{sen}(\alpha)}{\text{sen}(\beta)} = \frac{V_{ar}}{V_{ag}}
\end{equation}
Esta é a forma mais reveladora da Lei de Snell porque dá um significado físico da constante que aparece em $(3)$, pois é a razão entre a velocidade da luz no ar e a velocidade (menor) da luz na água. Essa constante é chamada de índice de refração da água. Se substituírmos a água por qualquer outro meio translúcido, como álcool, glicerina, vidro, ... então a constante teráum valor numérico diferente, pois cada meio possui um índice de refração diferente.

Podemos aplicar o teste da segunda derivada em $(4)$ para verificar se $(5)$ realmente minimiza $T$, observando se esta é positiva:
\begin{equation*}
\frac{d^2T}{dx^2} = \frac{1}{V_{ar}}\frac{a^2}{(a^2+x^2)^{3/2}} + \frac{1}{V_{ag}}\frac{b^2}{\left( b^2+(c-x)^2 \right)^{3/2}}>0
\end{equation*}

Referências:

[1] Cálculo com Geometria Analítica - Simmons - Ed. McGraw-Hill

Veja mais:

O refinamento de Snell
Usando derivadas para aproximar funções
Aplicação de derivadas para determinação de máximos e mínimos

Imprimir


30 de jun de 2016

O sistema de coordenadas polares

Um sistema de coordenadas no plano permite-nos associar um par ordenado de números a cada ponto do plano. Essa ideia simples e profunda que surgiu nos trabalhos dos matemáticos René Descartes e Pierre de Fermat, no século $XVII$ permite juntamente com o Cálculo investigar as propriedades das curvas através das ferramentas da Álgebra.


Na maioria dos casos, é abordado apenas o sistema de coordenadas retangulares ou cartesianas, no qual a ênfase é colocada sobre as distâncias de um ponto a dois eixos perpendiculares. Em algumas aplicações, tais como a curva descrita por um planeta em torno do sol, é mais vantajoso usar um outro sistema de coordenadas cuja posição de um ponto é descrito por sua direção a partir da origem, e por sua distância da origem. Um tal sistema é chamado de sistema de coordenadas polares.

Na figura acima, temos um ponto $P$ juntamente com suas coordenadas. A semirreta $OA$ é chamado eixo polar e $OP = r$ é o raio vetor. A direção especificada por um ângulo $\theta$ em radianos, medida a partir de $OA$. Este ângulo $\theta$ é positivo se for medido no sentido anti-horário e negativo se for medido no sentido horário exatamente como se faz na Trigonometria. A distância é dada pela distância orientada $r$, medida a partir da origem ao longo do lado terminal do ângulo $\theta$. Os dois números $r$ e $\theta$ escritos nesta ordem e denotados por $(r,\theta)$ chamam-se coordenadas polares do ponto. Observe que a semirreta $\theta = 0$ é o semi-eixo positivo dos $x$ e $\theta = \pi/2$ é o semi-eixo positivo dos $y$ e $r = 0$ indica-se a origem ou polo do sistema de coordenadas polares.

O termo "distância orientada" é devido ao fato de que em algumas situações encontramos $r$ negativo. Nesse caso, subentende-se que em vez de sair da origem no sentido indicado pelo lado terminal de $\theta$ nos dirigimos para a origem a ponto, percorrendo uma distância $r$ no sentido oposto a ele. Para compreender melhor este caso observe a figura abaixo.


Podemos associar o sistema de coordenadas polares com o sistema de coordenadas cartesianas colocando o eixo polar sobre o eixo $x$, de modo que eixo polar $OA$ aponte para o sentido positivo do eixo $x$ como na figura acima. Nesta figura, o ponto $A$ possui coordenadas $(3,\pi/4)$, mas este ponto também tem coordenadas polares dadas por $A(3,\pi/4 + 2\pi)$. Assim, todo múltiplo de $2\pi$ somado ou subtraído da coordenada $\theta$ de um ponto produz um outro ângulo com o mesmo lado terminal; portanto, temos uma outra coordenada $\theta$ do mesmo ponto.

Simmons comenta em seu livro de Cálculo com Geometria Analítica que: "o fato de que um ponto não é representado por um único par de coordenadas polares é um aborrecimento, embora pequeno. Contudo, é verdade que qualquer par de coordenadas polares dado determina o correspondente ponto sem nenhuma ambiguidade."

Agora, já temos dois sistemas de coordenadas no plano e próximo passo é descobrir o modo de transformar as coordenadas de um sistema nas coordenadas do outro e vice-versa. Para isso, considere a figura abaixo:



Do triângulo retângulo, temos $\cos (\theta) = \cfrac{x}{r}$ e $\text{sen} (\theta) = \cfrac{y}{r}$. Assim, para transformar coordenadas polares em coordenadas cartesianas, usamos as expressões:
\begin{cases}
x = r\cos (\theta)\\
y = r\ \text{sen} (\theta)
\end{cases}
Novamente deste triângulo retângulo, temos
\begin{equation*}
\text{tg} (\theta) = \frac{y}{x} \Longrightarrow \theta = \text{arctg} \left(\frac{y}{x}\right)
\end{equation*}
e pelo teorema de Pitágoras,
\begin{equation*}
x^2 + y^2 = r^2
\end{equation*}
Estas expressões nos fornece o caminho para transformar coordenadas cartesianas em polares, isto é,
\begin{cases}
\theta = \text{arctg} \left(\cfrac{y}{x}\right)\\
r = \sqrt{x^2 + y^2}
\end{cases}

Exemplo $1$:

Transforme:

$a)$ $(3,4)$ para coordenadas polares;
$b)$ $(2,\pi/3)$ para coordenadas cartesianas.

Resolução:

$a)$ Neste caso, $r = \sqrt{3^2 + 4^2} = 5$ e $\text{tg} (\theta) = \cfrac{4}{3}  \Longrightarrow \theta = \text{arctg}\left(\cfrac{4}{3}\right)$.

$b)$ Analogamente, usando as expressões acima, temos
\begin{equation*}
x = 2\cos \left(\frac{\pi}{3}\right) = 2\cdot \frac{1}{2} = 1
\end{equation*}
e
\begin{equation*}
y = 2~\text{sen} \left(\frac{\pi}{3}\right) = \sqrt{3}
\end{equation*}
Se o raio vetor $r$ está relacionado com $\theta$ através da expressão $r = f(\theta)$, então se a função $f(\theta)$ é razoavelmente simples, podemos esboçar o seu gráfico escolhendo uma sequência adequada de valores de $\theta$ e calculando os valores correspondentes de $r$. O gráfico polar abaixo nos auxilia nesta tarefa.


Exemplo $2$:

A curva cuja equação polar é $r = 2~(1 + \cos (\theta))$ é conhecida por cardioide (coração em latim). Sua representação no gráfico polar é dada na figura abaixo.



Outros gráficos podem ser gerados desta forma, tais como circunferências, limaçons, lemniscatas, espirais, rosáceas, entre outros.

* Este artigo é uma republicação. O link do artigo original encontra-se nas referências.


Referências:

[1] O sistema de coordenadas Polares no blog Fatos Matemáticos, originalmente escrito pelo prof. Paulo Sérgio C. Lino

Veja mais:

Números complexos 
Área em coordenadas polares
Centro de gravidade de áreas planas

Imprimir


26 de mai de 2016

A primeira Garrafa de Klein

O amor é como a Garrafa de Klein.
Não tem limites e nos coloca em outra dimensão.


Felix Christian Klein nasceu a $25$ de abril de $1849$ em Düsseldorf, Prússia, atual Alemanha e morreu em 22 de junho em Göttingen, Alemanha.

Em $1908$ criou a Comissão Internacional de Instrução Matemática, que padronizou o ensino de matemática no mundo. Trabalhou de $1908$ até $1920$ em uma pesquisa cujo objeto era a evolução da Educação Matemática em diversos países. A garrafa de Klein foi estudada em $1882$.

Conhecida por suas “propriedades estranhas”, a garrafa de Klein é um objeto matemático que vive em um espaço de quatro dimensões embora possa ser visualizado em um espaço de três dimensões. A garrafa de Klein, um conceito da matemática bastante interessante, trata-se de uma superfície fechada sem margens e não orientável, isto é, uma superfície onde não é possível definir um “interior” e um “exterior”.

A Garrafa de Klein é uma superfície não-orientável ou informalmente, uma superfície na qual as noções de esquerda e direita ou acima e abaixo não podem ser definidas.

A Garrafa de Klein pode ser construída no sentido matemático, porque esta não pode ser concebida fisicamente sem permitirmos que a superfície apresente uma intersecção com ela mesma pela junção de ambos os lados de duas fitas de Möbius.

A fita de Möbius é um espaço topológico obtido pela colagem das duas extremidades de uma fita, após efetuar meia volta numa delas. Deve o seu nome a August Ferdinand Möbius, que a estudou em $1858$.


Quem construiu efetivamente a primeira Garrafa de Klein foi Mitsugi Ohno, nascido a $28$ de junho de $1926$ em Bato-Machi, Tochigi-Ken, Japão.

Mitsugi graduou-se no curso elementar em $1939$. Foi enviado a Tokio por seus pais onde seria aprendiz de seu tio que havia adquirido a Companhia Takagi de instrumentos científicos em vidro. Durante a guerra, Mitsugi trabalhou como soprados de vidro no departamento de pesquisa da Divisão de Suprimentos de Medicina Naval.

Em $1961$ migrou para os Estados Unidos, onde desenvolveu as vidrarias usadas na Universidade Estadual de Kansas.

Nas horas vagas ele produzia esculturas de vidro em escala reduzida. Suas esculturas de vidro eram extremamente detalhadas e Mitsugi tornou-se conhecido na Universidade de Kansas por dizer: “Tudo aquilo que pode ser produzido com o vidro, sou capaz de fazer”.

O Professor Cardwell lhe fez um desafio: construir uma garrafa de Klein legítima em vidro.

Após vários dias tentando, construir a garrafa de Klein com uma única abertura, Mitsugi afirmou que o objeto seria impossível de fabricar em vidro. Mas, algum tempo depois, a solução do problema foi revelada a ele em um sonho e Mitsugi foi ao laboratório para soprar o vidro e fabricá-la. Essa foi a mais complexa obra de Mitsugi ao longo de sua carreira como soprador de vidro.


Referências:

[1] http://www.blog.mcientifica.com.br
[2] http://www-groups.dcs.st-and.ac.uk/~history

Veja mais:

O Cálculo no Japão
As figuras de Kolam e o bracelete de Krishna
Lobachevsky e as geometrias não-euclidianas


Imprimir


1 de mai de 2016

Resolução da Integral $\displaystyle \int \frac{x^2+1}{x^2-1}dx$

Nesta postagem, veremos que:
\begin{equation*}
\int \frac{x^2+1}{x^2-1}dx = x+ \ln|x-1|- \ln|x+1| + C
\end{equation*}
onde $x \in \mathbb{R}$, sendo $x \neq \pm 1$.



Seja a integral:
\begin{equation*}
I = \int \frac{x^2+1}{x^2-1}dx
\end{equation*}
Decompomos o integrando como uma soma de frações unitárias:
\begin{equation*}
I = \int \left(\frac{1}{x-1} - \frac{1}{x+1} + 1\right) dx
\end{equation*}
Integrando termo a termo:
\begin{equation*}
I = \int\frac{dx}{x-1} - \int \frac{dx}{x+1} +\int dx
\end{equation*}
Para o integrando$\displaystyle \frac{1}{x-1}$, fazemos a substituição $u = x-1$ e $du=dx$:
\begin{equation*}
I = \int \frac{du}{u} - \int \frac{dx}{x+1} + \int dx
\end{equation*}
Para o integrando $\displaystyle \frac{1}{x+1}$, fazemos a substituição $v=x+1$ e $dv=dx$:
\begin{equation*}
I = \int \frac{du}{u} - \int \frac{dv}{v} + \int dx
\end{equation*}
A integral de $1/u$ é $\ln |u|$. A integral de $1/v$ é $\ln |v|$ e a integral de $1$ é $x$. Assim:
\begin{equation*}
I = \ln |u| - \ln |v| + x + C
\end{equation*}
Mas $u=x-1$ e $v=x+1$. Logo:
\begin{equation*}
I = x + \ln |x-1| - \ln |x+1| + C
\end{equation*}

Exemplo $1$

Calcular a área entre a curva $\displaystyle f(x) \frac{x^2+1}{x^2-1}$ e o eixo dos $x$, compreendida no intervalo $\left[ -\frac{1}{2},\frac{1}{2}\right]$.



Para calcularmos a área entre a curva $f(x)$ e o eixo dos $x$, utilizamos o conceito de integral definida:
\begin{equation*}
A = \int_{-1/2}^{1/2} \frac{x^2+1}{x^2-1} dx
\end{equation*}
Sabendo que:
\begin{equation*}
\int \frac{x^2+1}{x^2-1} dx = x +\ln|x-1| - \ln |x+1|
\end{equation*}
Obtemos:
\begin{equation*}
A = \left[x + \ln|x-1| - \ln|x+1| \right]_{-1/2}^{1/2}\\
\ \\
A = \left(\frac{1}{2} + \ln \left| \frac{1}{2}-1\right| - \ln\left|\frac{1}{2}+1\right|\right) - \left(-\frac{1}{2} + \ln\left|-\frac{1}{2}-1\right| - \ln \left|-\frac{1}{2}+1\right|\right)\\
\ \\
A = \frac{1}{2} + \ln\left|-\frac{1}{2}\right| - \ln \left|\frac{3}{2}\right| + \frac{1}{2} - \ln \left|-\frac{3}{2}\right| + \ln\left|\frac{1}{2}\right|\\
\ \\
A \approx -1,1972246

\end{equation*}
O valor negativo só quer dizer que a curva no intervalo especificado, encontra-se sob o eixo dos $x$. Assim, a área compreendida entre a curva $f(x)$ e o eixo dos $x$, no intervalo $[-1/2,1/2]$, vale aproximadamente $1,1972346$.

Imprimir

Veja mais:

Lista de resolução de integrais
Integração por substituição
Integração por partes


Imprimir


8 de fev de 2016

Resolução da integral $\displaystyle \int \frac{1}{ax+b}\ dx$

Nesta postagem veremos que:
\begin{equation*}
\int \frac{1}{ax+b}\ dx = \frac{1}{a}\ln |ax+b| + C
\end{equation*}
onde $a$ e $b$ $\in \mathbb{R}$, sendo $a \neq 0$.


[Família de funções integráveis do tipo $\displaystyle \frac{1}{ax+b}$]

Seja a integral:
\begin{equation*}
I = \int \frac{1}{ax+b}\ dx
\end{equation*}
Para o integrando, fazemos a substituição $u=ax+b$. Assim, $du=a\ dx$ e $\displaystyle dx=\frac{1}{a}du$:
\begin{equation*}
I = \frac{1}{a} \int \frac{1}{u}\ du
\end{equation*}
A integral de $\displaystyle \frac{1}{u}$ é $\ln (u)$. Assim:
\begin{equation*}
I = \frac{1}{a} \cdot \ln|u| + C
\end{equation*}
Mas $u=ax+b$, logo:
\begin{equation*}
I = \frac{1}{a} \cdot \ln|ax+b| + C
\end{equation*}

Exemplo:

Encontrar a área entre a curva $\displaystyle f(x)=\frac{1}{2x+1}$ e o eixo dos $x$, compreendida no intervalo de $[0,1]$.



Para calcularmos a área entre a curva $\displaystyle f(x)=\frac{1}{2x+1}$ e o eixo dos $x$ nos limites $x=0$ e $x=1$, usamos a integral definida:
\begin{equation*}
A = \int_0^1 \frac{1}{2x+1}\ dx
\end{equation*}
Sabendo que:
\begin{equation*}
\int \frac{1}{ax+b}\ dx = \frac{1}{a} \ln|ax+b|
\end{equation*}
fazemos $a=2$ e $b=1$, obtendo:
\begin{equation*}
A = \left[ \frac{1}{2}\ \ln|2x+1| \right]_0^1 = \left[ \frac{1}{2} \ln(3) - \frac{1}{2}\ln (1)\right] \approx 0,54931
\end{equation*}
Assim, a área compreendida entre a curva $f(x)$ e o eixo dos $x$ no limite $[0,1]$ vale aproximadamente $0,54931$ unidades de área.

Imprimir

Veja mais

Lista de resolução de integrais
Integração por substituição
Integração por partes

Imprimir


Redes Sociais

Arquivo do Blog

Seguidores

Comentários Recentes